Protozoa

Objective:

- To know the basic cytology and characteristics of protozoa.
- Understand their importance in the ecology of water treatment and significance as pathogens in water supply.

References

- Sleigh, M. Protozoa and other Protists
- Curds, C.R. Protozoa in the Water Industry
- Mitchell, R Environmental Microbiology
- Gray, N F Biology of Wastewater Treatment

Outline

Introduction, Classification, Characteristics, Water Ecology, Water Pathogens.

Protozoa - Introduction

- Members of Protista kingdom
- Eukaryotic mostly Unicellular
- Reproduce sexually (Conjugation) asexually (Binary Fission)
- Motile (not all)

- swimming, gliding, crawling

May have Plastids (Algae?)

- these can be lost

- Size 5 μm > 500 μm
- Extremely Diverse Morphology – c.f. bacteria, fungi

Morphology

- □ Nucleus in nuclear membrane
 - 1 or 2 nuclei

Cytoplasmic Membrane

- Present in all
- **Organelles often present**
 - mitochondria, golgi, Chloroplasts!
- Cell Wall Absent
- **Cell Coat / Shell**
 - Pellicle
 - Test
 - Lorica
- 🗆 Cilia, Cirri
- 🛛 Flagella
- **Contractile Vacuole**
 - in free-living protozoa

Feeding

- **Autotrophs (Phototrophic)**
 - Primary producers like Algae
- □ Heterotrophs
 - Saprobic dead and decaying matter
 - Holozoic whole live organisms

– bacteria, algae, other protozoa

- **Raptorial Feeding**
 - Actively seek prey (Didinium)
- □ Filtration
 - Cilia beat, cilia trap (Vorticella)
 - Buccal Cavity (Mouth region)
 - Cytostome Phagocytosis
- **Stick to Prey**
 - Suctoria tentacles with haptocyst (Acineta)
 - suck contents of cell
- **Pinocytosis cell drinking**
 - soluble organics

Sarcomastigophora

Mastigophora subphylum having flagellum

Phytomastigophora

- phototrophic flagellates
- can lose chloroplasts
- e.g. Euglena, Peranema

Zoomastigophora

- animal-like flagellates
- -e.g. Bodo, Oikomonas
- some parasitic e.g. *Giardia**, *Trypanosoma**

Sarcodina subphylum having pseudopoda

Rhizopoda

- move by pseudopoda
- Naked Amoeba, Entamoeba*
- Testate Arcella
- Actinopoda
 - planktonic
 - Radiolaria
 - radial axopoda, siliceous skeleton.

Apicomplexa

□ <u>Sporozoea</u>

- simple, resistant spores and oocysts
- parasitic
- e.g. Cryptosporidium* Plasmodium (malaria)* Toxoplasmosis*

<u>Microsporidia</u> <u>Myxosporidia</u>

Obligate intracellular parasites in vertebrates, invertebrates, protists e.g. *Nosema* disease in Honey bees

<u>Ciliophora</u>

The major Phylum in terms of diversity and actual numbers in Aquatic Environments.

A number of sub-classes, all have cilia or ciliary organelles. Most are free-living. Four types are of most interest.

□1. Suctoria

- Predatory on other protozoa, sessile.
- no cilia, but have tentacles.
- e.g. Acineta, Podophyra

D2. Peritrichia

- Sessile usually stalked.
- Bell-shaped pellicle, some have lorica.
- Cilia bands.
- e.g. Vorticella Carchesium Opercularia

<u>Ciliophora</u>

3. Holotrichia

- free-swimming
- body covered in cilia
- some predatory
- e.g. Paramecium Chilodonella Colpidium

4. Spirotrichia

- cilia in rows, sheets, tufts, i.e. Cirri
- Crawl on surfaces
- e.g. Aspidisca Euplotes

Ecological Function

- □ Surface waters
- □ Sewage treatment
 - primary feeders

 holozoic bacterial predation
 - particulate ingestion (detritus)
 - uptake of dissolved BOD
 - Benefits
 - Purification
 - Clarified effuents
 - Pathogen Removal

Ecological Factors Affecting Protozoa

□ Water

- essential, Encyst when shortage.
- □ Temperature
 - Survive extremes by spores or cysts.
- □ Oxygen
 - free-living species mostly aerobic
 - gut parasites, symbionts anaerobic.
- **Carbon Dioxide**
 - high conc. toxic to many species
 - Paramecium, & Bodo tolerant, find them with pollution.
- □ Salinity
 - Strong effect on water uptake by cell.
 - Contractile vacuole compensates.
 - most species either fresh- or saltwater.

Saprobic Zones - Protozoa

scheme of Kolkwitz & Marsson (1902)

1. Polysaprobic (large numbers small diversity) **Bodo, Oikomonas, Paramecium BOD** (10 - 50 mg/l) 2. Mesosaprobic (greater diversity, + pigmented flagellates) α- BOD (5 - 10 mg/l) β - BOD (2.5 - 5 mg/l) **Chladydomonas** (pigmented flagellate) **Chilomonas** (flagellate) **Colpidium** (ciliate) Arcella (amoebae) 3. Oligosaprobic photosynthetic protozoa Ш **BOD** (< 2.5 mg/l) Dinobryon Ceratium + ciliates and amoebae

(limited application due to the lengthy identification process)

Protozoal Diseases

Giardiasis - *Giardia lamblia*

- flagellate, symmetrical organelles
- waterborne epidemics, 10⁶ cases/yr giving diarrhoea, nausea, cramps.
- adhesive disc attaches to gut wall
- animals and humans
- transmission through faeces
- cysts resistant to chlorination
- 10⁸ cysts/g faeces
- infectious dose 25 cysts
- Filtration best method for removal

Cryptosporidiosis - *Cryptosporidium sp.*

- only recently identified epidemiology
- Sporozoan oocysts
- Cow faeces (177days 40% viable)
- 1989 Reading outbreak
- 1993 Milwaukee 419,000 infected.
- filtration best prevention

Protozoal Diseases

□ **Trypanosomes**

flagellates

T.cruzi Chagas Disease

- South America
- animals and man
- Bugs faeces entersInfants Eyes
- fatal

• T. brucei African Sleeping Sickness

- Tsetse fly vector
- invade cerebrospinal fluid and brain
- fatal

□ Amoebic Dysentery

- Rhizopod Entamoeba histolytica
- mild infection (gut lumen)
- severe (gut wall)
- abscess, metastases in liver
- warm climates increase incidence of the latter condition.

Protozoal Diseases

□ Malaria *Plasmodium malariae*

- Sporozoan
- Complex life cycle Mosquito vector, liver cells and blood cells.
- Synchronised erythrocyte lysis
- 72 hourcycle of fever
- Prophylactic drugs for blood cells
- Liver infection resistant recurrent

□ Leishmanias (flagellates)

Oriental Sore - Sand Fly vector

-local abscess

Kala-azar

-tissue parasite

-liver, spleen, bone marrow

🛛 Naegleria fowleri

Primary Amoebic Meningoencephalitis PAM

-Watersports, Roman Baths + sewage contamination-death 7 days , headaches, fever, encephalitis

• Can harbour *Legionella* in water tanks